EconPapers    
Economics at your fingertips  
 

Efficiency in multivariate functional nonparametric models with autoregressive errors

Sophie Dabo-Niang, S. Guillas and C. Ternynck

Journal of Multivariate Analysis, 2016, vol. 147, issue C, 168-182

Abstract: In this paper, we introduce a new procedure for the estimation in the nonlinear functional regression model where the explanatory variable takes values in an abstract function space and the residual process is autocorrelated. Moreover, we consider the case where the response variable takes its values in Rd. The procedure consists in a pre-whitening transformation of the dependent variable based on the estimated autocorrelation. We establish both consistency and asymptotic normality of the regression function estimate. For kernel methods encountered in the literature, the correlation structure is commonly ignored (the so-called “working independence estimator”); we show here that there is a strong benefit in taking into account the autocorrelation in the error process. We also find that the improvement in efficiency can be large in our functional setting, up to 25% in the presence of high autocorrelation levels. We observe that the additional step of iterating the fitting process actually deteriorates the estimation. We illustrate the skills of the methods on simulations as well as on application on ozone levels over the US.

Keywords: Autoregressive process; Functional data; Kernel regression; Pre-whitening; Time series (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000105
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:147:y:2016:i:c:p:168-182

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.01.007

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:168-182