Semi-parametric survival function estimators deduced from an identifying Volterra type integral equation
Gerhard Dikta,
Martin Reißel and
Carsten Harlaß
Journal of Multivariate Analysis, 2016, vol. 147, issue C, 273-284
Abstract:
Based on an identifying Volterra type integral equation for randomly right censored observations from a lifetime distribution function F, we solve the corresponding estimating equation by an explicit and implicit Euler scheme. While the first approach results in some known estimators, the second one produces new semi-parametric and pre-smoothed Kaplan–Meier estimators which are real distribution functions rather than sub-distribution functions as the former ones are. This property of the new estimators is particular useful if one wants to estimate the expected lifetime restricted to the support of the observation time.
Keywords: Survival analysis; Censored data; Semi-parametric random censorship model; Asymptotic efficiency; Product-integration; Volterra integral equation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:147:y:2016:i:c:p:273-284
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.02.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().