Local linear regression on correlated survival data
Zhezhen Jin and
Wenqing He
Journal of Multivariate Analysis, 2016, vol. 147, issue C, 285-294
Abstract:
Correlated survival data arise in many contexts, and the regression analysis of such data is often of interest in practice. In this paper, we study a weighted local linear regression method for the analysis of correlated censored data, which is a natural extension of classical nonparametric regression that models directly the effect of covariates on survival time, using an unknown smooth nonparametric function. The estimation and inference are based on local linear regression and a class of unbiased data transformations. The most important feature of the proposed method is to weight local observations with local variance, which is the key to improve the estimation efficiency. We derive the asymptotic properties of the resulting estimator and show that the asymptotic variance of the nonparametric estimator is minimized with the correct specification of correlation structure. We evaluate the performance of the proposed method using simulation studies, and illustrate the proposed method with an analysis of data from the Busselton Health Study.
Keywords: Asymptotic bias; Correlated survival data; Kernel function; Local linear regression; Mean squared error; Nonparametric curve estimation; Unbiased data transformation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000282
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:147:y:2016:i:c:p:285-294
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.02.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().