Analysis of bivariate zero inflated count data with missing responses
Miao Yang,
Kalyan Das and
Anandamayee Majumdar
Journal of Multivariate Analysis, 2016, vol. 148, issue C, 73-82
Abstract:
Bivariate zero-inflated Poisson regression models have recently been used in various medical and biological settings to model excess zeros. However, there has not been any definite approach to deal with the same in the event of missing responses. The model itself is complex and as the responses are paired, missing values can occur in either or both coordinates. We propose a flexible Monte Carlo expectation maximization based approach to handle bivariate zero inflated count data with missing responses. We report the results of a simulation study designed to evaluate the performance of the proposed approach. To illustrate the application of our model and methodology, we consider a bivariate data concerning the demand for health care in Australia.
Keywords: Bivariate zero-inflated Poisson; Generalized linear model; MCEM algorithm; Missing data (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:148:y:2016:i:c:p:73-82
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.02.010
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().