EconPapers    
Economics at your fingertips  
 

More powerful tests for sparse high-dimensional covariances matrices

Liuhua Peng, Song Chen and Wen Zhou

Journal of Multivariate Analysis, 2016, vol. 149, issue C, 124-143

Abstract: This paper considers improving the power of tests for the identity and sphericity hypotheses regarding high dimensional covariance matrices. The power improvement is achieved by employing the banding estimator for the covariance matrices, which leads to significant reduction in the variance of the test statistics in high dimension. Theoretical justification and simulation experiments are provided to ensure the validity of the proposed tests. The tests are used to analyze a dataset from an acute lymphoblastic leukemia gene expression study for an illustration.

Keywords: Banding estimation; High-dimensional inference; Hypothesis testing; Sparse covariance matrix (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:149:y:2016:i:c:p:124-143

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.03.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:149:y:2016:i:c:p:124-143