Lack of fit tests for linear regression models with many predictor variables using minimal weighted maximal matchings
Forrest R. Miller and
James W. Neill
Journal of Multivariate Analysis, 2016, vol. 150, issue C, 14-26
Abstract:
We develop lack of fit tests for linear regression models with many predictor variables. General alternatives for model comparison are constructed using minimal weighted maximal matchings consistent with graphs on the predictor vectors. The weighted graphs we employ have edges based on model-driven distance thresholds in predictor space, thereby making our testing procedure implementable and computationally efficient in higher dimensional settings. In addition, it is shown that the testing procedure adapts to efficacious maximal matchings. An asymptotic analysis, along with simulation results, demonstrate that our tests are effective against a broad class of lack of fit.
Keywords: Linear regression; Lack of fit; Many predictors; Matchings (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:150:y:2016:i:c:p:14-26
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.05.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().