Posterior convergence for Bayesian functional linear regression
Heng Lian,
Taeryon Choi,
Jie Meng and
Seongil Jo
Journal of Multivariate Analysis, 2016, vol. 150, issue C, 27-41
Abstract:
We consider the asymptotic properties of Bayesian functional linear regression models where the response is a scalar and the predictor is a random function. Functional linear regression models have been routinely applied to many functional data analytic tasks in practice, and recent developments have been made in theory and methods. However, few works have investigated the frequentist convergence property of the posterior distribution of the Bayesian functional linear regression model. In this paper, we attempt to conduct a theoretical study to understand the posterior contraction rate in the Bayesian functional linear regression. It is shown that an appropriately chosen prior leads to the minimax rate in prediction risk.
Keywords: Functional regression; Minimax rate; Posterior contraction rate; Prediction risk; Reproducing kernel Hilbert space (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300227
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:150:y:2016:i:c:p:27-41
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.04.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().