A randomness test for functional panels
Piotr Kokoszka,
Matthew Reimherr and
Nikolas Wölfing
Journal of Multivariate Analysis, 2016, vol. 151, issue C, 37-53
Abstract:
Functional panels are collections of functional time series, and arise often in the study of high frequency multivariate data. We develop a portmanteau style test to determine if the cross-sections of such a panel are independent and identically distributed. Our framework allows the number of functional projections and/or the number of time series to grow with the sample size. A large sample justification is based on a new central limit theorem for random vectors of increasing dimension. With a proper normalization, the limit is standard normal, potentially making this result easily applicable in other FDA context in which projections on a subspace of increasing dimension are used. The test is shown to have correct size and excellent power using simulated panels whose random structure mimics the realistic dependence encountered in real panel data. It is expected to find application in climatology, finance, ecology, economics, and geophysics. We apply it to Southern Pacific sea surface temperature data, precipitation patterns in the South-West United States, and temperature curves in Germany.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1630046X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:151:y:2016:i:c:p:37-53
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.07.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().