Linear shrinkage estimation of large covariance matrices using factor models
Yuki Ikeda and
Tatsuya Kubokawa
Journal of Multivariate Analysis, 2016, vol. 152, issue C, 61-81
Abstract:
The problem of estimating a large covariance matrix using a factor model is addressed when both the sample size and the dimension of the covariance matrix tend to infinity. We consider a general class of weighted estimators which includes (i) linear combinations of the sample covariance matrix and the model-based estimator under the factor model, and (ii) linear shrinkage estimators without factors as special cases. The optimal weights in the class are derived, and plug-in weighted estimators are proposed, given that the optimal weights depend on unknown parameters. Numerical results show that our method performs well. Finally, we provide an application to portfolio management.
Keywords: Covariance matrix; Factor model; High dimension; Large sample; Non-normal distribution; Normal distribution; Portfolio management; Ridge-type estimator; Risk function (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300653
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:152:y:2016:i:c:p:61-81
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.08.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().