A nonparametric test for the evaluation of group sequential clinical trials with covariate information
Ao Yuan,
Yanxun Zheng,
Peng Huang and
Ming T. Tan
Journal of Multivariate Analysis, 2016, vol. 152, issue C, 82-99
Abstract:
Group sequential design is frequently used in clinical trials to evaluate a new treatment vs a control. Although nonparametric methods have the advantage of robustness, most such methods do not take into consideration of covariate information that could be used to improve the test accuracy if incorporated properly. We address this problem using a two-sample U-statistic that incorporates covariate information into the test statistic. The asymptotic properties of the proposed estimator are presented. Simulations are conducted to evaluate the performance of the test. We then apply the proposed method to the analysis of data from a Parkinson disease clinical trial, and demonstrate that the significance of the effect associated with deprenyl could be detected at an early stage.
Keywords: Covariate; Mann–Whitney difference; Group sequential clinical trial; Sequential conditional probability ratio test boundary; U-statistic (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:152:y:2016:i:c:p:82-99
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.08.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().