Economics at your fingertips  

Mean vector testing for high-dimensional dependent observations

Deepak Nag Ayyala, Junyong Park and Anindya Roy

Journal of Multivariate Analysis, 2017, vol. 153, issue C, 136-155

Abstract: When testing for the mean vector in a high-dimensional setting, it is generally assumed that the observations are independently and identically distributed. However if the data are dependent, the existing test procedures fail to preserve type I error at a given nominal significance level. We propose a new test for the mean vector when the dimension increases linearly with sample size and the data is a realization of an M-dependent stationary process. The order M is also allowed to increase with the sample size. Asymptotic normality of the test statistic is derived by extending the Central Limit Theorem for M-dependent processes using two-dimensional triangular arrays. The cost of ignoring dependence among observations is assessed in finite samples through simulations.

Keywords: High-dimension; Asymptotic normality; Triangular array; Dependent data; Mean vector testing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-11-10
Handle: RePEc:eee:jmvana:v:153:y:2017:i:c:p:136-155