A link-free approach for testing common indices for three or more multi-index models
Xuejing Liu,
Lei Huo,
Xuerong Meggie Wen and
Robert Paige
Journal of Multivariate Analysis, 2017, vol. 153, issue C, 236-245
Abstract:
Liu et al. (2015) proposed a novel link-free procedure for testing whether two multi-index models share identical indices via the sufficient dimension reduction approach. However, their method can only be applied to data with two populations. In practice, we often deal with situations where the same variables are being measured on objects from three or more groups, and we would like to know how similar these groups are with respect to some overall features. In this paper, we propose a link-free method which could test if three or more multi-index models share the same indices. The asymptotic properties of our test statistic are developed. Numerical studies and a real data analysis are conducted to illustrate the performance of our method.
Keywords: Sufficient dimension reduction; Multiple populations; Common principal component analysis; Multi-index model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301129
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:153:y:2017:i:c:p:236-245
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.10.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().