Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function
Ming-Xiang Cao and
Dao-Jiang He
Journal of Multivariate Analysis, 2017, vol. 153, issue C, 246-254
Abstract:
In order to investigate linearly admissible estimators of the common mean parameter in general linear models, we introduce and motivate the use of a balanced loss function obtained by combining Zellner’s idea of balanced loss (Zellner, 1994) with the unified theory of least squares (Rao, 1973). In classes of homogeneous and non-homogeneous linear estimators, sufficient and necessary conditions for linear estimators of the common mean parameter to be admissible are obtained, respectively. A comparison is then made between linearly admissible estimators and a “truly” unified least square estimator.
Keywords: Admissibility; Balanced loss function; Linear estimators; Common mean parameter (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301154
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:153:y:2017:i:c:p:246-254
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.10.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().