EconPapers    
Economics at your fingertips  
 

Bayesian estimators in uncertain nested error regression models

Shonosuke Sugasawa and Tatsuya Kubokawa

Journal of Multivariate Analysis, 2017, vol. 153, issue C, 52-63

Abstract: Nested error regression models are useful tools for the analysis of grouped data, especially in the context of small area estimation. This paper suggests a nested error regression model using uncertain random effects in which the random effect in each area is expressed as a mixture of a normal distribution and a positive mass at 0. For the estimation of the model parameters and prediction of the random effects, an objective Bayesian inference is proposed by setting non-informative prior distributions on the model parameters. Under mild sufficient conditions, it is shown that the posterior distribution is proper and the posterior variances are finite, confirming the validity of posterior inference. To generate samples from the posterior distribution, a Gibbs sampling method is provided with familiar forms for all the full conditional distributions. This paper also addresses the problem of predicting finite population means, and a sampling-based method is suggested to tackle this issue. Finally, the proposed model is compared with the conventional nested error regression model through simulation and empirical studies.

Keywords: Bayesian estimator; Nested error regression model; Posterior propriety; Small area estimation; Uncertain random effect (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1630094X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:153:y:2017:i:c:p:52-63

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.09.011

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:153:y:2017:i:c:p:52-63