EconPapers    
Economics at your fingertips  
 

Nonparametric estimation of a latent variable model

Augustin Kelava, Michael Kohler, Adam Krzyżak and Tim Fabian Schaffland

Journal of Multivariate Analysis, 2017, vol. 154, issue C, 112-134

Abstract: In this paper a nonparametric latent variable model is estimated without specifying the underlying distributions. The main idea is to estimate in a first step a common factor analysis model under the assumption that each manifest variable is influenced by at most one of the latent variables. In a second step nonparametric regression is used to analyze the relation between the latent variables. Theoretical results concerning consistency of the estimates are presented, and the finite sample size performance of the estimates is illustrated by applying them to simulated data.

Keywords: Common factor analysis; Latent variables; Nonparametric regression; Consistency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1630118X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:154:y:2017:i:c:p:112-134

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.10.006

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:154:y:2017:i:c:p:112-134