Nonparametric estimation of a latent variable model
Augustin Kelava,
Michael Kohler,
Adam Krzyżak and
Tim Fabian Schaffland
Journal of Multivariate Analysis, 2017, vol. 154, issue C, 112-134
Abstract:
In this paper a nonparametric latent variable model is estimated without specifying the underlying distributions. The main idea is to estimate in a first step a common factor analysis model under the assumption that each manifest variable is influenced by at most one of the latent variables. In a second step nonparametric regression is used to analyze the relation between the latent variables. Theoretical results concerning consistency of the estimates are presented, and the finite sample size performance of the estimates is illustrated by applying them to simulated data.
Keywords: Common factor analysis; Latent variables; Nonparametric regression; Consistency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1630118X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:154:y:2017:i:c:p:112-134
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.10.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().