EconPapers    
Economics at your fingertips  
 

Asymptotic properties of a component-wise ARH(1) plug-in predictor

J. Álvarez-Liébana, D. Bosq and M.D. Ruiz-Medina

Journal of Multivariate Analysis, 2017, vol. 155, issue C, 12-34

Abstract: This paper presents new results on the prediction of linear processes in function spaces. The autoregressive Hilbertian process framework of order one (ARH(1) framework) is adopted. A component-wise estimator of the autocorrelation operator is derived from the moment-based estimation of its diagonal coefficients with respect to the orthogonal eigenvectors of the autocovariance operator, which are assumed to be known. Mean-square convergence to the theoretical autocorrelation operator is proved in the space of Hilbert–Schmidt operators. Consistency then follows in that space. Mean absolute convergence, in the underlying Hilbert space, of the ARH(1) plug-in predictor to the conditional expectation is obtained as well. A simulation study is undertaken to illustrate the large-sample behavior of the formulated component-wise estimator and predictor. Additionally, alternative component-wise (with known and unknown eigenvectors), regularized, wavelet-based penalized, and nonparametric kernel estimators of the autocorrelation operator are compared with the one presented here, in terms of prediction.

Keywords: ARH(1) processes; Consistency; Functional prediction; Mean absolute and quadratic convergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:155:y:2017:i:c:p:12-34

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.11.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:12-34