An innovations algorithm for the prediction of functional linear processes
J. Klepsch and
C. Klüppelberg
Journal of Multivariate Analysis, 2017, vol. 155, issue C, 252-271
Abstract:
When observations are curves over some natural time interval, the field of functional data analysis comes into play. Functional linear processes account for temporal dependence in the data. The prediction problem for functional linear processes has been solved theoretically, but the focus for applications has been on functional autoregressive processes. We propose a new computationally tractable linear predictor for functional linear processes. It is based on an application of the Multivariate Innovations Algorithm to finite-dimensional subprocesses of increasing dimension of the infinite-dimensional functional linear process. We investigate the behavior of the predictor for increasing sample size. We show that, depending on the decay rate of the eigenvalues of the covariance and the spectral density operator, the resulting predictor converges with a certain rate to the theoretically best linear predictor.
Keywords: Functional data analysis (FDA); Functional linear process; Functional principal components; Functional time series; Hilbert space valued process; Innovations Algorithm; Prediction; Prediction error (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17300118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:155:y:2017:i:c:p:252-271
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.01.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().