A statistical framework for pathway and gene identification from integrative analysis
Quefeng Li,
Menggang Yu and
Sijian Wang
Journal of Multivariate Analysis, 2017, vol. 156, issue C, 1-17
Abstract:
In the era of big data, integrative analyses that pool data from different sources are now extensively conducted in order to improve performance. Among many interesting applications, genomics research is an area where integrative methods become popular tools to identify prognostic biomarkers for various diseases. In this paper, we propose such a framework for pathway and gene identification. Our method employs a hierarchical decomposition on genes’ effects followed by a proper regularization to identify important pathways and genes across multiple studies. Asymptotic theories are provided to show that our method is both pathway and gene selection consistent. More importantly, we explicitly show that pathway selection consistency needs milder statistical conditions than gene selection consistency, as it would allow false positives and negatives at the gene selection level. Finite-sample performance of our method is shown to be superior than other ad hoc methods in various simulation studies. We further apply our method to analyze five cardiovascular disease studies. Our method is intrinsically a general method on group-wise and element-wise selections from integrative analysis, which can have other applications beyond genomic research.
Keywords: Gene and pathway; High dimensional analysis; Integrative analysis; Variable selection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16302597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:156:y:2017:i:c:p:1-17
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.12.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().