Semi-parametric order-based generalized multivariate regression
Milad Kharratzadeh and
Mark Coates
Journal of Multivariate Analysis, 2017, vol. 156, issue C, 89-102
Abstract:
In this paper, we consider a generalized multivariate regression problem where the responses are some functions of linear transformations of predictors. We assume that these functions are strictly monotonic, but their form and parameters are unknown. We propose a semi-parametric estimator based on the ordering of the responses which is invariant to the functional form of the transformation function as long as it is strictly monotonic. We prove that our estimator, which maximizes the rank similarity between responses and linear transformations of predictors, is a consistent estimator of the true coefficient matrix. We also identify the rate of convergence and show that the squared estimation error decays with a rate of o(1/n). We then propose a greedy algorithm to maximize the highly non-smooth objective function of our model and examine its performance through extensive simulations. Finally, we compare our algorithm with traditional multivariate regression algorithms over synthetic and real data.
Keywords: Coefficient of agreement; Generalized multivariate regression; Kendall-type measure; Rank correlation; Semi-parametric regression (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17300611
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:156:y:2017:i:c:p:89-102
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.01.012
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().