Bayesian inference for higher-order ordinary differential equation models
Prithwish Bhaumik and
Subhashis Ghosal
Journal of Multivariate Analysis, 2017, vol. 157, issue C, 103-114
Abstract:
Often the regression function appearing in fields like economics, engineering, and biomedical sciences obeys a system of higher-order ordinary differential equations (ODEs). The equations are usually not analytically solvable. We are interested in inferring on the unknown parameters appearing in such equations. Parameter estimation in first-order ODE models has been well investigated. Bhaumik and Ghosal (2015) considered a two-step Bayesian approach by putting a finite random series prior on the regression function using a B-spline basis. The posterior distribution of the parameter vector is induced from that of the regression function. Although this approach is computationally fast, the Bayes estimator is not asymptotically efficient. Bhaumik and Ghosal (2016) remedied this by directly considering the distance between the function in the nonparametric model and a Runge–Kutta (RK4) approximate solution of the ODE while inducing the posterior distribution on the parameter. They also studied the convergence properties of the Bayesian method based on the approximate likelihood obtained by the RK4 method. In this paper, we extend these ideas to the higher-order ODE model and establish Bernstein–von Mises theorems for the posterior distribution of the parameter vector for each method with n−1/2 contraction rate.
Keywords: Bayesian inference; Bernstein–von Mises theorem; Higher order ordinary differential equation; Runge–Kutta method; Spline smoothing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17301604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:157:y:2017:i:c:p:103-114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.03.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().