A calibration method for non-positive definite covariance matrix in multivariate data analysis
Chao Huang,
Daniel Farewell and
Jianxin Pan
Journal of Multivariate Analysis, 2017, vol. 157, issue C, 45-52
Abstract:
Covariance matrices that fail to be positive definite arise often in covariance estimation. Approaches addressing this problem exist, but are not well supported theoretically. In this paper, we propose a unified statistical and numerical matrix calibration, finding the optimal positive definite surrogate in the sense of Frobenius norm. The proposed algorithm can be directly applied to any estimated covariance matrix. Numerical results show that the calibrated matrix is typically closer to the true covariance, while making only limited changes to the original covariance structure.
Keywords: Covariance matrix calibration; Nearness problem; Non-positive definiteness; Spectral decomposition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17301343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:157:y:2017:i:c:p:45-52
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.03.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().