EconPapers    
Economics at your fingertips  
 

Multiple correspondence analysis and the multilogit bilinear model

William Fithian and Julie Josse

Journal of Multivariate Analysis, 2017, vol. 157, issue C, 87-102

Abstract: Multiple correspondence analysis is a dimension reduction technique which plays a large role in the analysis of tables with categorical nominal variables, such as survey data. Though it is usually motivated and derived using geometric considerations, we prove that in fact, it can be seen as a single proximal Newton step of a natural bilinear exponential family model for categorical data: the multinomial logit bilinear model. We compare and contrast the behavior of multiple correspondence analysis with that of this model on simulated data, and discuss new insights into both approaches and their cognate models. Consequently, multiple correspondence analysis can be used to approximate the parameters of the multilogit model. Indeed, estimating the model’s parameters is non-trivial, whereas multiple correspondence analysis has the advantage of being easily solved by a singular value decomposition, and scalable to large data sets. We illustrate the methods on a survey of the drinking habits in France in the context of European policies against the harmful effects of alcohol on society.

Keywords: Contingency table; Correspondence analysis; Dimension reduction; Latent-space models; Low-rank approximation; Nominal data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1730115X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:157:y:2017:i:c:p:87-102

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2017.02.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:157:y:2017:i:c:p:87-102