Multivariate initial sequence estimators in Markov chain Monte Carlo
Ning Dai and
Galin L. Jones
Journal of Multivariate Analysis, 2017, vol. 159, issue C, 184-199
Abstract:
Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer’s method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments.
Keywords: Markov chain Monte Carlo; Covariance matrix estimation; Central limit theorem; Metropolis–Hastings algorithm; Gibbs sampler (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301877
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:159:y:2017:i:c:p:184-199
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.05.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().