EconPapers    
Economics at your fingertips  
 

Non-linear models for extremal dependence

Linda Mhalla, Valérie Chavez-Demoulin and Philippe Naveau

Journal of Multivariate Analysis, 2017, vol. 159, issue C, 49-66

Abstract: The dependence structure of max-stable random vectors can be characterized by their Pickands dependence function. In many applications, the extremal dependence measure varies with covariates. We develop a flexible, semi-parametric method for the estimation of non-stationary multivariate Pickands dependence functions. The proposed construction is based on an accurate max-projection allowing to pass from the multivariate to the univariate setting and to rely on the generalized additive modeling framework. In the bivariate case, the resulting estimator of the Pickands function is regularized using constrained median smoothing B-splines, and bootstrap variability bands are constructed. In higher dimensions, we tailor our approach to the estimation of the extremal coefficient. An extended simulation study suggests that our estimator performs well and is competitive with the standard estimators in the absence of covariates. We apply the new methodology to a temperature dataset in the US where the extremal dependence is linked to time and altitude.

Keywords: Extreme value theory; Generalized additive models; Max-stable random vectors; Non-stationarity; Pickands function; Semi-parametric models; Temperature data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17302361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:159:y:2017:i:c:p:49-66

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2017.04.006

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:159:y:2017:i:c:p:49-66