EconPapers    
Economics at your fingertips  
 

On optimal grouping and stochastic comparisons for heterogeneous items

Nil Kamal Hazra, Maxim Finkelstein and Ji Hwan Cha

Journal of Multivariate Analysis, 2017, vol. 160, issue C, 146-156

Abstract: In this paper, we consider series and parallel systems composed of n independent items drawn from a population consisting of m different substocks/subpopulations. We show that for a series system, the optimal (maximal) reliability is achieved by drawing all items from one substock, whereas, for a parallel system, the optimal solution results in an independent drawing of all items from the whole mixed population. We use the theory of stochastic orders and majorization orders to prove these and more general results. We also discuss possible applications and extensions.

Keywords: Majorization order; Parallel system; Reliability; Schur-convex/concave function; Series system; Stochastic orders (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301488
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:160:y:2017:i:c:p:146-156

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2017.06.006

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:146-156