Efficient test-based variable selection for high-dimensional linear models
Siliang Gong,
Kai Zhang and
Yufeng Liu
Journal of Multivariate Analysis, 2018, vol. 166, issue C, 17-31
Abstract:
Variable selection plays a fundamental role in high-dimensional data analysis. Various methods have been developed for variable selection in recent years. Well-known examples are forward stepwise regression (FSR) and least angle regression (LARS), among others. These methods typically add variables into the model one by one. For such selection procedures, it is crucial to find a stopping criterion that controls model complexity. One of the most commonly used techniques to this end is cross-validation (CV) which, in spite of its popularity, has two major drawbacks: expensive computational cost and lack of statistical interpretation. To overcome these drawbacks, we introduce a flexible and efficient test-based variable selection approach that can be incorporated into any sequential selection procedure. The test, which is on the overall signal in the remaining inactive variables, is based on the maximal absolute partial correlation between the inactive variables and the response given active variables. We develop the asymptotic null distribution of the proposed test statistic as the dimension tends to infinity uniformly in the sample size. We also show that the test is consistent. With this test, at each step of the selection, a new variable is included if and only if the p-value is below some pre-defined level. Numerical studies show that the proposed method delivers very competitive performance in terms of variable selection accuracy and computational complexity compared to CV.
Keywords: Cross-validation; High-dimensional testing; Maximal absolute correlation; Variable selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17302749
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:166:y:2018:i:c:p:17-31
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.01.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().