Economics at your fingertips  

Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations

Chunlin Wang, Paul Marriott and Pengfei Li

Journal of Multivariate Analysis, 2018, vol. 166, issue C, 182-197

Abstract: A non-standard, but not uncommon, situation is to observe multiple samples of nonnegative data which have a high proportion of zeros. This is the so-called excess of zeros situation and this paper looks at the problem of making inferences about the means of the underlying distributions. Under the semiparametric setup, proposed by Wang et al. (2017), we develop a unified inference framework, based on an empirical likelihood ratio (ELR) statistic, for making inferences on the means of multiple such distributions. A chi-square-type limiting distribution of this statistic is established under a general linear null hypothesis about the means. This result allows us to construct a new test for mean equality. Simulation results show favorable performance of the proposed ELR when compared with other existing methods for testing mean equality, especially when the correctly specified basis function in the density ratio model is the logarithm function. A real data set is analyzed to illustrate the advantages of the proposed method.

Keywords: Density ratio model; Empirical likelihood; Estimating equation; Multinomial logistic regression; Non-standard mixture model; Semi-continuous data (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-06-23
Handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:182-197