Nonparametric density estimation for spatial data with wavelets
Johannes T.N. Krebs
Journal of Multivariate Analysis, 2018, vol. 166, issue C, 300-319
Abstract:
Nonparametric density estimators are studied for d-dimensional, strongly spatial mixing data which are defined on a general N-dimensional lattice structure. We consider linear and nonlinear hard thresholded wavelet estimators derived from a d-dimensional multi-resolution analysis. We give sufficient criteria for the consistency of these estimators and derive rates of convergence in Lp′ for p′∈[1,∞). For this reason, we study density functions which are elements of a d-dimensional Besov space Bp,qs(Rd). We also verify the analytic correctness of our results in numerical simulations.
Keywords: Besov spaces; Density estimation; Hard thresholding; Rate of convergence; Spatial lattice processes; Strong spatial mixing; Wavelets (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1730461X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:166:y:2018:i:c:p:300-319
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.03.013
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().