Estimating tail probabilities of the ratio of the largest eigenvalue to the trace of a Wishart matrix
Yinqiu He and
Gongjun Xu
Journal of Multivariate Analysis, 2018, vol. 166, issue C, 320-334
Abstract:
This paper develops an efficient Monte Carlo method to estimate the tail probabilities of the ratio of the largest eigenvalue to the trace of the Wishart matrix, which plays an important role in multivariate data analysis. The estimator is constructed based on a change-of-measure technique and it is proved to be asymptotically efficient for both the real and complex Wishart matrices. Simulation studies further show the improved performance of the proposed method over existing approaches based on asymptotic approximations, especially when estimating probabilities of rare events.
Keywords: Ratio of largest eigenvalue to trace; Rare events; Wishart matrices; Tracy–Widom distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17304098
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:166:y:2018:i:c:p:320-334
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.03.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().