EconPapers    
Economics at your fingertips  
 

A U-classifier for high-dimensional data under non-normality

M. Rauf Ahmad and Tatjana Pavlenko

Journal of Multivariate Analysis, 2018, vol. 167, issue C, 269-283

Abstract: A classifier for two or more samples is proposed when the data are high-dimensional and the distributions may be non-normal. The classifier is constructed as a linear combination of two easily computable and interpretable components, the U-component and theP-component. The U-component is a linear combination of U-statistics of bilinear forms of pairwise distinct vectors from independent samples. The P-component, the discriminant score, is a function of the projection of the U-component on the observation to be classified. Together, the two components constitute an inherently bias-adjusted classifier valid for high-dimensional data. The classifier is linear but its linearity does not rest on the assumption of homoscedasticity. Properties of the classifier and its normal limit are given under mild conditions. Misclassification errors and asymptotic properties of their empirical counterparts are discussed. Simulation results are used to show the accuracy of the proposed classifier for small or moderate sample sizes and large dimensions. Applications involving real data sets are also included.

Keywords: Bias-adjusted classifier; High-dimensional classification; U-statistics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17305821
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:167:y:2018:i:c:p:269-283

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.05.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:269-283