EconPapers    
Economics at your fingertips  
 

Asymptotic performance of PCA for high-dimensional heteroscedastic data

David Hong, Laura Balzano and Jeffrey A. Fessler

Journal of Multivariate Analysis, 2018, vol. 167, issue C, 435-452

Abstract: Principal Component Analysis (PCA) is a classical method for reducing the dimensionality of data by projecting them onto a subspace that captures most of their variation. Effective use of PCA in modern applications requires understanding its performance for data that are both high-dimensional and heteroscedastic. This paper analyzes the statistical performance of PCA in this setting, i.e., for high-dimensional data drawn from a low-dimensional subspace and degraded by heteroscedastic noise. We provide simplified expressions for the asymptotic PCA recovery of the underlying subspace, subspace amplitudes and subspace coefficients; the expressions enable both easy and efficient calculation and reasoning about the performance of PCA. We exploit the structure of these expressions to show that, for a fixed average noise variance, the asymptotic recovery of PCA for heteroscedastic data is always worse than that for homoscedastic data (i.e., for noise variances that are equal across samples). Hence, while average noise variance is often a practically convenient measure for the overall quality of data, it gives an overly optimistic estimate of the performance of PCA for heteroscedastic data.

Keywords: Asymptotic random matrix theory; Heteroscedasticity; High-dimensional data; Principal component analysis; Subspace estimation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17304852
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:167:y:2018:i:c:p:435-452

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.06.002

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:435-452