Robust network-based analysis of the associations between (epi)genetic measurements
Cen Wu,
Qingzhao Zhang,
Yu Jiang and
Shuangge Ma
Journal of Multivariate Analysis, 2018, vol. 168, issue C, 119-130
Abstract:
With its important biological implications, modeling the associations of gene expression (GE) and copy number variation (CNV) has been extensively conducted. Such analysis is challenging because of the high data dimensionality, lack of knowledge regulating CNVs for a specific GE, different behaviors of the cis-acting and trans-acting CNVs, possible long-tailed distributions and contamination of GE measurements, and correlations between CNVs. The existing methods fail to address one or more of these challenges. In this study, a new method is developed to model more effectively the GE–CNV associations. Specifically, for each GE, a partially linear model, with a nonlinear cis-acting CNV effect, is assumed. A robust loss function is adopted to accommodate long-tailed distributions and data contamination. We adopt penalization to accommodate the high dimensionality and identify relevant CNVs. A network structure is introduced to accommodate the correlations among CNVs. The proposed method comprehensively accommodates multiple challenging characteristics of GE–CNV modeling and effectively overcomes the limitations of existing methods. We develop an effective computational algorithm and rigorously establish the consistency properties. Simulation shows the superiority of the proposed method over alternatives. The TCGA (The Cancer Genome Atlas) data on the PCD (programmed cell death) pathway are analyzed, and the proposed method has improved prediction and stability and biologically plausible findings.
Keywords: Copy number variation; Gene expression; Network structure; Partially linear model; Penalization; Robust estimation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17305936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:168:y:2018:i:c:p:119-130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.06.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().