D-optimal design for the heteroscedastic Berman model on an arc
Xin Liu,
Rong-Xian Yue and
Weng Kee Wong
Journal of Multivariate Analysis, 2018, vol. 168, issue C, 131-141
Abstract:
There are various methods for fitting data to circles or ellipses in many different types of applied problems. However, the design of such studies is rarely discussed and for the few that do, model errors are commonly assumed to be homoscedastic and uncorrelated. This paper provides an analytic description of the D-optimal designs for estimating parameters in the bivariate Berman model on an arc when errors are correlated and heteroscedastic. We evaluate D-efficiencies and relative efficiencies of the commonly used equidistant sampling methods and show that such designs can be inefficient.
Keywords: Approximate design; Complete classes; D-efficiency; Equidistant sampling method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17306486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:168:y:2018:i:c:p:131-141
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.07.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().