Classified mixed logistic model prediction
Hanmei Sun,
Thuan Nguyen,
Yihui Luan and
Jiming Jiang
Journal of Multivariate Analysis, 2018, vol. 168, issue C, 63-74
Abstract:
We develop a classified mixed logistic model prediction (CMLMP) method for clustered binary data by extending a method proposed by Jiang et al. (2018) for continuous outcome data. By identifying a class, or cluster, that the new observations belong to, we are able to improve the prediction accuracy of a probabilistic mixed effect associated with a future observation over the traditional method of logistic regression and mixed model prediction without matching the class. Furthermore, we develop a new strategy for identifying the class for the new observations by utilizing covariates information, which improves accuracy of the class identification. In addition, we develop a method of obtaining second-order unbiased estimators of the mean squared prediction errors (MSPEs) for CMLMP, which are used to provide measures of uncertainty. We prove consistency of CMLMP, and demonstrate finite-sample performance of CMLMP via simulation studies. Our results show that the proposed CMLMP method outperforms the traditional methods in terms of predictive performance. An application to medical data is discussed.
Keywords: Clustered binary data; CMLMP; CMMP; Matching; Mixed logistic model; Mixed model prediction; MSPE (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18300769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:168:y:2018:i:c:p:63-74
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.06.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().