Modeling, simulation and inference for multivariate time series of counts using trawl processes
Almut Veraart
Journal of Multivariate Analysis, 2019, vol. 169, issue C, 110-129
Abstract:
This article presents a new continuous-time modeling framework for multivariate time series of counts which have an infinitely divisible marginal distribution. The model is based on a mixed moving average process driven by Lévy noise, called a trawl process, where the serial correlation and the cross-sectional dependence are modeled independently of each other. Such processes can exhibit short or long memory. We derive a stochastic simulation algorithm and a statistical inference method for such processes. The new methodology is then applied to high frequency financial data, where we investigate the relationship between the number of limit order submissions and deletions in a limit order book.
Keywords: Count data; Continuous time modeling of multivariate time series; Infinitely divisible; Limit order book; Multivariate negative binomial law; Poisson mixtures; Trawl processes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16302068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:169:y:2019:i:c:p:110-129
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.08.012
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().