General Gaussian estimation
Tonglin Zhang
Journal of Multivariate Analysis, 2019, vol. 169, issue C, 234-247
Abstract:
This article proposes a general Gaussian estimation approach for situations where the implementation of maximum likelihood estimation is difficult. The primary task is to construct a Gaussian estimation function by putting exact expressions of the mean vector and the variance–covariance matrix of the response vector into the log-likelihood function of the multivariate normal distribution. A Gaussian estimator is derived by maximizing the Gaussian estimation function. This construction can induce an optimality condition that the true parameter vector is the unique maximizer of the expected value of the Gaussian estimation function. The optimality condition is equally important to that given by the Kullback–Leibler information number in the maximum likelihood approach. It is a major condition in the derivation of nice theoretical properties such as consistency and asymptotic normality. The general Gaussian estimation approach can significantly reduce the computational burden when the log-likelihood function of a statistical model contains intractable high-dimensional integrals. By applying it to the Poisson-lognormal model, a special case of generalized linear mixed effect models, a closed-form (i.e., without intractable integrals) estimation approach for fixed effect parameters and variance components is derived. The simulation study shows that the resulting estimator is precise, reliable, and computationally efficient.
Keywords: Closed-form estimation; Consistency; General Gaussian estimation; Kullback–Leibler information number; Optimality condition; Poisson-Lognormal model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18301118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:169:y:2019:i:c:p:234-247
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.09.010
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().