Describing the concentration of income populations by functional principal component analysis on Lorenz curves
Enea G. Bongiorno and
Aldo Goia
Journal of Multivariate Analysis, 2019, vol. 170, issue C, 10-24
Abstract:
Lorenz curves are widely used in economic studies (inequality, poverty, differentiation, etc.). From a model point of view, such curves can be seen as constrained functional data for which functional principal component analysis (FPCA) could be defined. Although statistically consistent, performing FPCA using the original data can lead to a suboptimal analysis from a mathematical and interpretation point of view. In fact, the family of Lorenz curves lacks very basic (e.g., vectorial) structures and, hence, must be treated with ad hoc methods. This work aims to provide a rigorous mathematical framework via an embedding approach to define a coherent FPCA for Lorenz curves. This approach is used to explore a functional dataset from the Bank of Italy income survey.
Keywords: Consistency; Hanging cable problem; Hilbert embedding approach; Modes of variation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17304827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:170:y:2019:i:c:p:10-24
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.09.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().