EconPapers    
Economics at your fingertips  
 

Multivariate and functional robust fusion methods for structured Big Data

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman and Badih Ghattas

Journal of Multivariate Analysis, 2019, vol. 170, issue C, 149-161

Abstract: We address one of the important problems in Big Data, namely how to combine estimators from different subsamples by robust fusion procedures, when we are unable to deal with the whole sample. We propose a general framework based on the classic idea of ‘divide and conquer’. In particular we address in some detail the case of a multivariate location and scatter matrix, the covariance operator for functional data, and clustering problems.

Keywords: Big data; Clustering; Functional data; Robustness (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17306899
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:170:y:2019:i:c:p:149-161

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.06.012

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:170:y:2019:i:c:p:149-161