Strongly consistent autoregressive predictors in abstract Banach spaces
María D. Ruiz-Medina and
Javier Álvarez-Liébana
Journal of Multivariate Analysis, 2019, vol. 170, issue C, 186-201
Abstract:
This work derives new results on strong consistent estimation and prediction for autoregressive processes of order 1 in a separable Banach space B. The consistency results are obtained for the component-wise estimator of the autocorrelation operator in the norm of the space L(B) of bounded linear operators on B. The strong consistency of the associated plug-in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert space constructed in Kuelbs’ lemma (Kuelbs, 1970). A Hilbert–Schmidt embedding introduces the Reproducing Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the Rigged Hilbert space structure. This paper extends the work of Bosq (2000) and Labbas and Mourid (2002).
Keywords: Banach spaces; Continuous embeddings; Functional plug-in predictors; Strongly consistent estimators (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17307248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:170:y:2019:i:c:p:186-201
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.08.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().