Modeling spatially dependent functional data via regression with differential regularization
Eleonora Arnone,
Laura Azzimonti,
Fabio Nobile and
Laura M. Sangalli
Journal of Multivariate Analysis, 2019, vol. 170, issue C, 275-295
Abstract:
We propose a method for modeling spatially dependent functional data, based on regression with differential regularization. The regularizing term enables to include problem-specific information about the spatio-temporal variation of the phenomenon under study, formalized in terms of a time-dependent partial differential equation. The method is implemented using a discretization based on finite elements in space and finite differences in time. This non-tensor product basis allows to handle efficiently data distributed over complex domains and where the shape of the domain influences the phenomenon’s behavior. Moreover, the method can comply with specific conditions at the boundary of the domain of interest. Simulation studies compare the proposed model to available techniques for spatio-temporal data. The method is also illustrated via an application to the study of blood-flow velocity field in a carotid artery affected by atherosclerosis, starting from echo-color doppler and magnetic resonance imaging data.
Keywords: Finite elements; Partial differential equation; Penalized regression; Smoothing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17307613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:170:y:2019:i:c:p:275-295
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2018.09.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().