EconPapers    
Economics at your fingertips  
 

Data depth for measurable noisy random functions

Stanislav Nagy and Frédéric Ferraty

Journal of Multivariate Analysis, 2019, vol. 170, issue C, 95-114

Abstract: In the literature on data depth applicable to random functions, it is usually assumed that the trajectories of all the random curves are continuous, known at each point of the domain, and observed exactly. These assumptions turn out to be unrealistic in practice, as the functions are often observed only on a finite grid of time points, and in the presence of measurement errors. In this work, we provide the necessary theoretical background enabling the extension of the statistical methodology based on data depth to measurable (not necessarily continuous) random functions observed within the latter framework. It is shown that even if the random functions are discontinuous, observed discretely, and contaminated with additive noise, many common depth functionals maintain the fine consistency properties valid in the ideal case of completely observed noiseless functions. For the integrated depth for functions, we provide uniform rates of convergence over the space of integrable functions.

Keywords: Asymptotics; Data depth; Functional data; Measurement error; Rate of convergence; Smoothing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X17306590
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:170:y:2019:i:c:p:95-114

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.11.003

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:170:y:2019:i:c:p:95-114