EconPapers    
Economics at your fingertips  
 

Sufficient dimension reduction and prediction in regression: Asymptotic results

Liliana Forzani, Daniela Rodriguez, Ezequiel Smucler and Mariela Sued

Journal of Multivariate Analysis, 2019, vol. 171, issue C, 339-349

Abstract: We consider model-based sufficient dimension reduction for generalized linear models and prove the consistency and asymptotic normality of the prediction estimator studied empirically for the normal case by Adragni and Cook (2009) when a sample version of the sufficient dimension reduction is used. Moreover, we provide a formula for the prediction that does need require explicitly computing the reduction.

Keywords: Exponential family; Generalized linear model; Inverse regression; Maximum likelihood; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18302823
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:171:y:2019:i:c:p:339-349

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.12.003

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:339-349