High-dimensional testing for proportional covariance matrices
Koji Tsukuda and
Shun Matsuura
Journal of Multivariate Analysis, 2019, vol. 171, issue C, 412-420
Abstract:
Hypothesis testing for the proportionality of covariance matrices is a classical statistical problem and has been widely studied in the literature. However, there have been few treatments of this test in high-dimensional settings, especially for the case where the number of variables is larger than the sample size, despite high-dimensional statistical inference having recently received considerable attention. This paper studies hypothesis testing for the proportionality of two covariance matrices in the high-dimensional setting: m,n≍pδ for some δ∈(1∕2,1), where m and n denote the sample sizes and p denotes the number of variables. A test statistic is proposed and its asymptotic distribution is derived under multivariate normality. The non-asymptotic performance of the proposed test procedure is numerically examined.
Keywords: Asymptotic test; High-dimension; Multivariate normal distribution; Proportional covariance model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18302756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:171:y:2019:i:c:p:412-420
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.01.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().