Geometry of discrete copulas
Elisa Perrone,
Liam Solus and
Caroline Uhler
Journal of Multivariate Analysis, 2019, vol. 172, issue C, 162-179
Abstract:
The space of discrete copulas admits a representation as a convex polytope, and this has been exploited in entropy-copula methods used in hydrology and climatology. In this paper, we focus on the class of component-wise convex copulas, i.e., ultramodular copulas, which describe the joint behavior of stochastically decreasing random vectors. We show that the family of ultramodular discrete copulas and its generalization to component-wise convex discrete quasi-copulas also admit representations as polytopes. In doing so, we draw connections to the Birkhoff polytope, the alternating sign matrix polytope, and their generalizations, thereby unifying and extending results on these polytopes from both the statistics and the discrete geometry literature.
Keywords: Discrete (quasi-) copulas; Negative dependence; Stochastic decreasingness; Maximum entropy; Convex optimization; Transportation polytope; Alternating sign matrix polytope (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18301684
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:172:y:2019:i:c:p:162-179
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.01.014
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().