Rank reduction for high-dimensional generalized additive models
Hongmei Lin,
Heng Lian and
Hua Liang
Journal of Multivariate Analysis, 2019, vol. 173, issue C, 672-684
Abstract:
When a regression problem contains multiple predictors, additive models avoid the difficulty of fitting multivariate functions and at the same time retain some nonlinearity of the model. When the dimension is high, the necessity to estimate a large number of functions, even though univariate, can cause concerns regarding statistical efficiency. We propose a rank reduction approach that assumes that all functions share a small common set of latent functions, which allows borrowing information from a large number of functions. The idea is general and could be used in any model with a large number of functions to estimate, but here we restrict our attention to generalized additive models, especially logistic models, that can deal with discrete responses and is useful for classification. Numerical results are reported to illustrate the finite sample performance of the estimator. We also establish an improved convergence rate of the rank reduction approach compared to the standard estimator and extend it to sparse modeling to deal with an even larger number of predictors.
Keywords: Asymptotic normality; B-splines; Latent functions; Logistic regression (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18305293
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:173:y:2019:i:c:p:672-684
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.05.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().