Rate optimal estimation and confidence intervals for high-dimensional regression with missing covariates
Yining Wang,
Jialei Wang,
Sivaraman Balakrishnan and
Aarti Singh
Journal of Multivariate Analysis, 2019, vol. 174, issue C
Abstract:
We consider the problems of estimation and of constructing component-wise confidence intervals in a sparse high-dimensional linear regression model when some covariates of the design matrix are missing completely at random. We analyze a variant of the Dantzig selector for estimating the regression model and we use a de-biasing argument to construct component-wise confidence intervals. We also complement our mathematical study in the supplementary materials with extensive simulations on synthetic and semi-synthetic data that show the accuracy of our asymptotic predictions for finite sample sizes.
Keywords: Dantzig selector; De-biasing; High-dimensional regression; Missing data; Confidence intervals; Minimax rates (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18304238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18304238
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.06.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().