Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach
Alexander Meier,
Claudia Kirch and
Renate Meyer
Journal of Multivariate Analysis, 2020, vol. 175, issue C
Abstract:
Many Bayesian nonparametric approaches to multivariate time series rely on Whittle’s Likelihood, involving the second order structure of a stationary time series by means of its spectral density matrix. In this work, we model the spectral density matrix by means of random measures that are constructed in such a way that positive definiteness is ensured. This is in line with existing approaches for the univariate case, where the normalized spectral density is modeled similar to a probability density, e.g. with a Dirichlet process mixture of Beta densities. We present a related approach for multivariate time series, with matrix-valued mixture weights induced by a Hermitian positive definite Gamma process. The latter has not been considered in the literature, allows to include prior knowledge and possesses a series representation that will be used in MCMC methods. We establish posterior consistency and contraction rates and small sample performance of the proposed procedure is shown in a simulation study and for real data.
Keywords: Bayesian nonparametrics completely random measures; Spectral density; Stationary multivariate time series (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18306225
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x18306225
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.104560
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().