Test for conditional independence with application to conditional screening
Yeqing Zhou,
Jingyuan Liu and
Liping Zhu
Journal of Multivariate Analysis, 2020, vol. 175, issue C
Abstract:
Measuring and testing conditional dependence are fundamental problems in statistics. Imposing mild conditions on Rosenblatt transformations (Rosenblatt, 1952), we establish an equivalence between the conditional and unconditional independence, which appears to be entirely irrelevant at the first glance. Such an equivalence allows us to convert the problem of testing conditional independence into the problem of testing unconditional independence. We further adopt the Blum–Kiefer–Rosenblatt correlation (Blum et al., 1961) to develop a test for conditional independence, which is powerful to capture nonlinear dependence and is robust to heavy-tailed errors. We obtain explicit forms for the asymptotic null distribution which involves no unknown tunings, rendering fast and easy implementation of our test for conditional independence. With this conditional independence test, we further propose a conditional screening method for high dimensional data to identify truly important covariates whose effects may vary with exposure variables. We use the false discovery rate to determine the screening cutoff. This screening approach possesses both the sure screening and the ranking consistency properties. We illustrate the finite sample performances through simulation studies and an application to the gene expression microarray dataset.
Keywords: Conditional independence; Feature screening; High dimensional data; Independence; Sure screening property (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X19300168
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19300168
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.104557
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().