Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
Qian Fang,
Chen Yu and
Zhang Weiping
Journal of Multivariate Analysis, 2020, vol. 176, issue C
Abstract:
Estimating covariance matrix is one of the most important analytical tasks in analyzing multivariate longitudinal data, which provides a unique opportunity in studying the joint evolution of multiple response variables over time. This paper introduces a BiConvex Blockwise Regularization (BCBR) sparse estimator for the precision matrix (inverse of the covariance matrix) of high dimensional multivariate longitudinal responses. Using the modified Cholesky block decomposition, we impose a block banded structure on the Cholesky factor and sparsity on the innovation variance matrices via a novel convex hierarchical penalty and lasso penalty, respectively. The blockwise banding structure is a generalization of the existing banding structure for univariate longitudinal data. An efficient alternative convex optimization algorithm is developed by using ADMM algorithm. The resulting estimators are shown to converge in an optimal rate of Frobenius norm, and the exact bandwidth recovery is established for the precision matrix. Simulations and real-life data analysis show that the proposed estimator outperforms its competitors.
Keywords: Banded block structure; Biconvex; Block Cholesky decomposition; High dimensional longitudinal data; Precision matrix (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X19302830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:176:y:2020:i:c:s0047259x19302830
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.104580
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().