Testing and estimating change-points in the covariance matrix of a high-dimensional time series
Ansgar Steland
Journal of Multivariate Analysis, 2020, vol. 177, issue C
Abstract:
This paper studies methods for testing and estimating change-points in the covariance structure of a high-dimensional linear time series. The assumed framework allows for a large class of multivariate linear processes (including vector autoregressive moving average (VARMA) models) of growing dimension and spiked covariance models. The approach uses bilinear forms of the centered or non-centered sample variance–covariance matrix. Change-point testing and estimation are based on maximally selected weighted cumulated sum (CUSUM) statistics. Large sample approximations under a change-point regime are provided including a multivariate CUSUM transform of increasing dimension. For the unknown asymptotic variance and covariance parameters associated to (pairs of) CUSUM statistics we propose consistent estimators. Based on weak laws of large numbers for their sequential versions, we also consider stopped sample estimation where observations until the estimated change-point are used. Finite sample properties of the procedures are investigated by simulations and their application is illustrated by analyzing a real data set from environmetrics.
Keywords: Change-point; CUSUM transform; Data science; High-dimensional statistics; Projection; Spatial statistics; Spiked covariance; Strong approximation; VARMA processes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18305104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:177:y:2020:i:c:s0047259x18305104
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.104582
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().